Heat Capacities at Constant Volume of Pure Water in the Temperature Range 412−693 K at Densities from 250 to 925 kg·m⁻³

Ilmutdin M. Abdulagatov,* Vasiliy I. Dvoryanchikov, and Abdurakhman N. Kamalov

Institute for Geothermal Problems of the Dagestan Scientific Center of the Russian Academy of Sciences, 367030 Makhachkala, Kalinina 39 A, Dagestan, Russia

The heat capacity at constant volume C_V of pure water has been measured in the temperature range from 412 K to 693 K at 13 isochores between 250 kg·m⁻³ and 925 kg·m⁻³. Measurements cover the critical region and coexistence curve. Measurements have been made in both the one- and two-phase regions near the phase transition points. The measurements were made in a high-temperature, highpressure adiabatic nearly constant-volume calorimeter. The uncertainty of the heat capacity measurements is estimated to be within $\pm 2.5\%$. Liquid and vapor one- (C_{V1}, C'_{V1}) and two-phase (C_{V2}, C'_{V2}) heat capacities, temperatures (T_S) , and densities (ρ_S) at saturation were obtained by the method of quasistatic thermograms. The parameters (c, T^*, V) of the simplified-perturbed-hard-chain-theory (SPHCT) equation of state have been optimized to allow calculations of heat capacities for water in the vapor and liquid phases. The relative average deviations for H₂O were within about $\pm 4.5\%$, except in the critical region where differences reached 15-20% or more. The two-phase heat capacity data C_{V2} were used to evaluate the second temperature derivatives of the vapor pressure and chemical potential. Values of the vapor pressure of water were calculated from C_{V2} measurements using critical pressure and the temperature derivative of the saturation pressure at the critical point.

1. Introduction

Under supercritical conditions, the properties of water are very different from those of ambient water (Franck, 1984). In the supercritical region one obviously has the possibility to vary thermodynamic properties continuously from gaslike to liquidlike values. Water in near-critical and supercritical conditions has special properties, which can make the application interesting beyond the usual use as a solvent. The high compressibility permits substantial and continuous changes of the thermodynamic properties by variation of temperature and pressure only.

Water, the most important solvent in nature, has surprising properties as a reaction medium in its supercritical state. The remarkable anomalous properties of supercritical fluids are widely used in industry. Supercritical fluids are of fundamental importance in geology and mineralogy (for hydrothermal synthesis), in chemistry, in the oil and gas industries (e.g., in tertiary oil recovery), and for some new separation techniques, especially in supercritical fluid extraction (Kiran and Levelt Sengers, 1993; Kiran and Brennecke, 1993; Bright and McNally, 1992; Johnston and Penninger, 1989). Supercritical water is used for destruction of hazardous wastes and has been explored as a solvent medium to carry out chemical reactions or biological degradations without char formation (Modell, 1985; Staszak et al., 1987; Huang et al., 1989; Tester et al., 1991).

Accurate values of the heat capacity are valuable for establishing the behavior of the higher-order temperature derivatives of an equation of state (Amirkhanov et al., 1988; Abdulagatov et al., 1994a,b; Luddecke and Magee, 1996; Weber, 1981). For example, the heat capacity at constant volume C_V is related to the equation of state P(V, T) by

$$\left(\frac{\partial C_V}{\partial V}\right)_T = T \left(\frac{\partial^2 P}{\partial T^2}\right)_V \tag{1}$$

The curvature of P-T isochores are connected with C_V by eq 1.

In addition, the liquid (C_{V2}) and vapor (C'_{V2}) saturated heat capacities in the two-phase state are related to the second temperature derivatives (d^2P_S/dT^2) and ($d^2\mu/dT^2$) by

$$\frac{d^2 P_{\rm S}}{d T^2} = \frac{C_{V2}' - C_{V2}}{T(V' - V)} \quad \text{and} \quad \frac{d^2 \mu}{d T^2} = \frac{V' C_{V2} - V C_{V2}'}{T(V - V')}$$
(2)

Therefore, heat capacity measurements are useful contributions to the development of a reliable equation of state. Equations of state whose parameters are determined from PVT measurements in general do not yield a good representation of caloric properties (C_V , C_P , H, S) because the calculation depends on the first $(\partial P / \partial T)_V$ and second derivatives $(\partial^2 P / \partial T^2)_V$ of the P - T isochores. Values of $(\partial^2 P / \partial T^2)_V$ are very small and are often known with low accuracy even when high-quality P(T, V) results are available. If, however, measurements of C_V are available, the use of wellknown thermodynamic relations can yield an equation of state that is capable of reproducing caloric (C_V , C_P , S, H) and (P, V, T) properties within the experimental accuracy of the measurements. Together with the PVT data, the C_V , V, T measurements will provide a database for developing improved nonclassical equations of state and testing predictive models for pure water. In this paper the parameters (c, T^*, V^*) of the simplified-perturbed-hardchain-theory (SPHCT) equation of state have been optimized to calculate the heat capacities for water in the vapor and liquid phases far from the critical point.

* To whom correspondence should be addressed. E-mail: ilmutdin@ boulder.nist.gov or kvadro@sinol.ru. In previous papers of Amirkhanov et al. (1974), Kerimov (1964), Baehr et al. (1974), Baehr and Schomacker (1975),

Table 1. Primary Experimental Data for the SpecificHeat Capacity at Constant Volume of Pure Water

year	density range/kg·m ⁻³	temp range /K
1964	46.210-988.142	322.65-773.960
1974	45.620 - 999.001	286.69-1021.17
1975	212.993-396.04	643.15-693.150
1995	255.75 - 426.990	643.61-660.870
1998	250.00 - 925.240	412.57-693.240
	year 1964 1974 1975 1995 1998	yeardensity range/kg·m ⁻³ 196446.210-988.142197445.620-999.0011975212.993-396.041995255.75-426.9901998250.00-925.240

Figure 1. Schematic representation of the apparatus for C_V measurements: 1, inner thin-walled spherical bomb; 2, semiconductor layer of Cu₂O; 3, 4, 5, outer adiabatic shells; 6, inner heater; 7, perforated stirrer; 8, platinum resistance thermometer; 9, filling pipe; 10, stell tap; 11, outer heaters; 12, asbestos gasket.

and Abdulagatov et al. (1995a), C_V data of pure water at near-critical and supercritical conditions was reported. In Table 1 primary data sets are collected with their individual temperature and density ranges. In Baehr et al. (1974) and Baehr and Schomacker (1975), the C_V data were obtained as the ratio of energy increments ΔU over temperature increments ΔT , with ΔT on the order of degrees. In these papers they made measurements of C_V for pure water at nine isochores in the range from (212.993 to 396.040) kg·m⁻³ for temperatures between (643 and 693) K.

In this paper, we report the heat capacity at constant volume of pure water under near-critical and supercritical conditions. The measurements cover the range in temperature from (412 to 693) K at 13 isochores between (250 and 925) kg·m⁻³ which includes the critical region and the coexistence curve.

The apparatus was previously used to measure C_V of pure water, carbon dioxide, ethane, propane, propan-1-ol, propan-2-ol, and binary systems of ethane + propane, H₂O + NaCl, H₂O + KCl, H₂O + NaOH, and H₂O + KNO₃ near the critical point of pure water (Abdulagatov et al., 1989, 1993, 1994a,b, 1995a,b, 1996, 1997a,b).

Experimental Section

The heat capacity at constant volume measurements were performed in the nearly constant-volume adiabatic calorimeter described by Abdulagatov et al. (1997a,b). Briefly, a sample of well-established mass (m) is confined to a thin-walled (1.5 mm wall thickness) spherical bomb (diameter 96 mm) of approximately 407.148 cm³ volume.

Figure 2. Measured heat capacities as a function of the temperature difference ΔT for isochore $\rho = 580.99 \text{ kg} \cdot \text{m}^{-3}$ at temperature T = 623.8 K.

Figure 3. Schematic representation of the $T(\tau)$ thermogram for H_2O at isochore 720.046 kg·m⁻³; \bullet , break point ($T_S = 569.60 \pm 0.02$ K is the coexistence temperature).

The exact volume varies with temperature and pressure. Figure 1 illustrates the scheme of the apparatus. Essentially the calorimetric device consists of the inner bomb, the outer spherical shell (8 mm wall thickness), thermostating screen, high-precision temperature regulator for the thermostat and for the adiabatic layer shell, calorimetric heater, stirring branch, digital measuring units for power measurement of the calorimetric heater, platinum resistance thermometer (PRT), and filling capillary. In the gap between the inner thin-walled sphere and the outer shell the highly sensitive semiconducting material (copper oxide Cu₂O) was situated. A layer of Cu₂O ensured adiabatic protection and acted as a thermal screen and performed the role of a layer transmitting pressure to a stronger outer shell. By using a sensitive potentiometer, it was possible to control the temperature differences between the inner sphere and the first thermal screen with an accuracy of $\pm 10^{-5}$ K. This permitted reduction of heat losses through the semiconductor layer to a minimum. The outer heater offered the possibility of regulating the temperature of the outer shell, keeping it constant at the temperature of the inside part of the calorimeter.

When a precisely measured amount of electrical energy (ΔQ) is applied, the resulting temperature rise (ΔT) is measured. When the empty-calorimeter heat capacity C_0 is subtracted from the total heat capacity $(\Delta Q/\Delta T)$, the heat capacity of the sample is

$$C_V = \frac{1}{m} \left\{ \frac{\Delta Q}{\Delta T} - C_0 \right\} \tag{3}$$

The empty-calorimeter heat-capacity C_0 was previously determined using different standard liquids with a wellknown heat capacity at constant pressure at atmospheric pressure (water, heptane, and hexane) (Vargaftik, 1983) in the temperature range from (293 K to 700 K). The scatter of the experimental results was not larger than $\pm 0.3\%$. For our calorimeter heat capacity of the empty

Table 2.	Experimental	Values of Heat	Capacities	C_V for Pure	Water in t	he One-	and Two-	Phase I	Region at V	Various
Isochorie	es as a Function	n of Temperatu	e						_	

			remperatur								
<i>T</i> /K	$C_{v}/kJ\cdot kg^{-1}\cdot K^{-1}$	<i>T</i> /K	$C_{v}/kJ\cdot kg^{-1}\cdot K^{-1}$	<i>T</i> /K	$C_{v}/kJ\cdot kg^{-1}\cdot K^{-1}$	<i>T</i> /K	$C_{\nu}/$ kJ·kg ⁻¹ ·K ⁻¹	<i>T</i> /K	$C_{v}/kJ\cdot kg^{-1}\cdot K^{-1}$	<i>T</i> /K	$C_{v}/$ kJ·kg ⁻¹ ·K ⁻¹
$\rho = 925$.241/kg·m ⁻³	$\rho = 580$.990 /kg∙m ⁻³	$\rho = 370$.370/kg·m ⁻³	$\rho = 344$.828/kg·m ⁻³	$\rho = 316$.840/kg·m ⁻³	$\rho = 309$.598/kg·m ⁻³
419 596	1 974	610.000	6 0 1 5	611 917	0.991	644 947	10.051	642 227	10 201	642 957	10.954
412.330	4.274	019.099	0.045	044.247	9.551	044.247	10.031	043.227	10.301	043.237	10.034
412.936	4.275	619.409	6.048	644.887	9.542	644.567	10.180	643.547	10.206	643.937	10.544
413.326	4.276	619.739	6.061	645.207	9.736	644.887	10.448	643.707	10.531	644.287	10.708
413 726	4 275	620.069	6 046	645 537	9 875	645 207	10 665	644 487	11 269	644 627	11 131
414 110	1.075	620.000	0.010	010.007	10 112	010.207	10.000	011.107	11.200	644.077	11.101
414.110	4.275	020.389	0.052	045.850	10.113	045.557	10.929	044.807	11.800	044.977	11.390
one	e-phase	620.719	6.061	646.176	10.397	645.857	11.218	645.127	12.018	645.317	11.574
414.509	3.606	621.379	6.070	646.496	10.632	646.176	11.737	645.287	11.453	645.487	11.574
414 906	3 608	000	nhasa	646 576	10 070	646 496	12 311	645 447	11 453	645 657	12 077
414.000	0.000	001 700		040.070	10.370	040.430	10,400	045.447	10.700	045.057	12.077
415.296	3.607	621.709	3.018	646.666	11.110	646.816	13.499	645.767	12.700	645.827	11.985
415.696	3.606	622.029	3.022	646.746	11.595	646.976	14.177	646.086	12.072	645.996	12.261
416.085	3.606	622.679	3.031	646.826	12.105	647.146	14.877	646.406	13.094	646.166	12.805
416 475	2 605	622 000	2 021	646 806	12 190	000	nhaca	646 566	12 649	646 226	12 625
10.10	0.000	020.000	0.001	040.000	10.100	0.47 0.00		040.000	10.012	040.550	10.020
$\rho = 913$.993/kg•m 3	623.759	3.002	one	e-pnase	647.306	9.163	646.726	13.454	646.506	13.303
two	o-phase	624.089	3.005	647.976	6.191	647.466	6.932	646.886	14.990	646.676	13.776
424.764	4.307	624,409	2,998	647.146	5.680	647.626	6.722	647.046	15.914	646.846	14,794
125 154	1 209	o — 455	$560/kgm^{-3}$	647 206	5 241	647 786	6 220	647 126	21 122	647 026	10.945
425.154	4.308	$\rho = 433$.JOU/Kg*III	047.300	5.041	047.700	0.329	047.120	21.133	047.020	19.045
425.544	4.307	two	o-phase	647.466	5.211	647.946	5.902	647.206	20.025	647.196	10.251
425.924	4.307	640.247	8.183	647.626	4.703	648.106	5.601	one	e-phase	one	e-phase
426.314	4.307	640.577	8.187	647.786	4,902	648.266	5.530	647.286	10.025	647.366	6.237
126 704	2 5 2 7	640 807	0 1 0 0	647 046	1 917	648 426	5 400	647 266	Q 125	647 526	5 052
420.704	3.337	040.097	0.100	047.940	4.047	040.420	5.400	047.300	0.125	047.550	5.055
one	e-phase	641.537	8.187	648.106	4.779	648.586	5.199	647.446	7.233	647.706	5.061
427.084	3.538	641.867	8.200	648.426	4.605	648.746	5.107	647.606	6.622	647.876	5.060
427 484	3 538	642 187	8 229	648 746	4 520	648 906	5 1 5 1	647 766	6 1 4 5	648 046	4 869
407 004	0.000	042.107	0.220	040.740	4.407	040.000	4 00 4	047.000	0.145	040.040	4.000
427.864	3.537	642.507	8.208	649.066	4.437	649.066	4.994	647.926	0.210	648.386	4.869
428.254	3.536	642.827	8.246	649.386	4.356	649.226	4.847	648.086	6.069	648.736	4.755
428.644	3.536	643.147	8.313	649.706	4.286	649.386	4.772	648.246	5.894	649.076	4.718
429 023	3 537	one	e-nhase	650 026	4 235	649 706	4 696	648 406	5 596	649 416	4 621
420.412	0.007	049 407	2 914	000.020	4.100	010.700	4,000	640.096	5 115	010.110	4.005
429.413	3.330	043.407	3.214	030.340	4.190	050.020	4.092	049.020	5.115	049.750	4.005
$\rho = 874$.738/kg•m ⁻³	643.787	3.198	650.665	4.148	650.186	4.579	649.186	5.190	650.096	4.608
two	p-phase	644.117	3.189	651.985	4.084	650.346	4.546	649.346	5.190	650.446	4.582
462 401	4 437	644 437	3 202	651 305	4 068	650 666	4 513	649 506	5 136	650 786	4 521
400 771	4 497	011.107	0.202	001.000	2.000	000.000	4.400	010.000	4.025	000.100	4.440
402.771	4.437	044.757	3.198	031.023	3.908	050.985	4.499	049.000	4.935	001.400	4.440
463.141	4.437	645.077	3.185	651.945	3.951	651.305	4.387	650.206	4.776	$\rho = 250$.000/kg•m ⁻³
463.521	4.438	645.727	3.173	652.265	3.867	651.625	4.324	650.306	4.843	two	o-phase
464.261	4.439	0 = 424	.863/kg·m ⁻³	652,905	3.855	651.945	4.274	650.466	4.688	642.527	13,194
101.201	nhaca	ρ 1≈1	nhaca	652 225	2 846	652 265	1.271	650 626	1.667	642 767	12 502
101.001	e-pilase	0.40.007	o-phase	033.223	3.040	052.205	4.200	030.020	4.007	042.707	12.393
464.631	3.407	643.207	8.207	660.884	3.680	652.425	4.203	650.786	4.571	643.007	12.851
465.001	3.403	643.847	8.297	661.204	3.708	652.585	4.190	650.945	4.566	643.247	12.990
465 381	3 412	644 167	8 361	661 524	3 700	652 905	4 157	651 105	4 512	643 487	13 061
465 751	2 /15	611.107	0.001	661 024	2 601	652 225	4 1 4 0	651 965	1.512	642 797	19 570
403.731	0.410	044.407	0.000	001.034	3.091	000.220	4.140	051.205	4.302	043.727	12.370
466.121	3.403	644.817	8.693	662.154	3.667	661.204	3.859	651.595	4.412	643.967	13.173
466.851	3.395	645.137	9.310	662.474	3.654	661.524	3.847	651.915	4.479	644.207	14.192
$\rho = 807$.037/kg·m ⁻³	one	e-phase	662.794	3.654	661.834	3.851	652,235	4.315	644.447	14.213
p 001	nhaca	645 457	2 171	662 114	2 608	662 154	2 925	652 205	1 2 4 0	611 697	14 202
	J-pilase	045.457	3.474	003.114	3.008	002.134	3.833	052.595	4.549	044.007	14.2.32
516.330	4.693	645.777	3.471	663.424	3.653	662.474	3.818	652.555	4.353	644.927	14.248
516.690	4.693	646.106	3.469	663.744	3.657	662.794	3.817	652.875	4.274	645.167	14.366
517 040	4 694	646.426	3.461	664.064	3.604	663.114	3,793	653.035	4.257	645.407	14.318
517 400	1 601	646 746	3 /38	664 384	3 600	663 424	3 805	653 105	1 273	645 647	14 320
517.400	4.004	040.740	0.401	004.304	5.000	000.424	0.000	000.100	4.275	045.047	14.520
517.750	4.694	647.066	3.421	672.602	3.540	663.744	3.800	660.074	3.939	645.887	14.409
one	e-phase	647.386	3.401	672.912	3.520	671.022	3.688	660.234	3.926	646.126	14.518
518.100	3.185	647.706	3.404	673.232	3.506	671.332	3.675	660.394	3.918	one	e-phase
518 450	3 1 8 1	648 036	3 394	673 542	3 507	671 652	3 650	660 714	3 934	646 366	5 634
510.400	0.101	040.030	0.007	070.042	0.507	071.002	0.000	000.714	0.004	040.000	4 77 1
518.810	3.189	048.676	3.387	0/3.862	3.520	072.962	3.666	001.034	3.934	040.606	4.751
519.150	3.181			674.182	3.511	672.282	3.650	661.674	3.906	646.846	4.648
519.510	3.177					672.912	3.617	661.994	3.926	647.326	4.616
510 860	3 1 8 1					673 232	3 646	662 154	3 01/		
510.000	0.170					070.202	0.040	002.134	0.014		
520.210	3.173					673.542	3.633	662.474	3.906		
$\rho = 720$.046/kg•m ⁻³					673.862	3.608	668.833	3.759		
two	p-phase					674.182	3.616	669.153	3.759		
567 701	5 161							675 161	3 638		
501.101	5.101							67F 001	0.000		
008.041	5.101							0/0.321	3.029		
568.371	5.154							675.641	3.613		
568.711	5.155							675.961	3.608		
569.051	5.159							676.601	3,629		
560 201	5 1 6 9							676 761	2 6 / 1		
303.331	0.100							070.701	5.041		
one	e-phase							076.921	3.598		
569.731	3.030							677.081	3.587		
570.051	3.030							692.387	3,399		
570 201	3 026							692 707	3 107		
570.701	0.020							006.101	0.407		
3/0./31	3.027							093.027	3.391		
571.071	3.026							693.187	3.370		
571.411	3.028										

Figure 4. Heat capacity at constant volume C_V of the pure water at various liquid isochores as a function of the temperature near the phase transition and critical points. The symbols correspond to the experimental data obtained in this work, and solid curves represent smoothed values of C_V .

Figure 5. Heat capacities at constant volume C_V of H₂O as a function of temperature in the one- and two-phase regions at fixed near-critical isochores $\rho = 370.370 \text{ kg} \cdot \text{m}^{-3}$ (\Box , Kerimov, 1964; \bullet , this work); the solid line represents smoothed values of C_V .

calorimeter could be represented by a linear function of temperature

$$C_0/J \cdot K^{-1} = 208.724 + 0.127 T/K$$
 (4)

Uncertainty in C_V measurements arises from several sources. The total uncertainty in reported values for C_V stems from uncertainty in measurement of the quantities C_0 , ΔT , *m*, and ΔQ in eq 3.

The relative error in determining the mass of the sample $m \text{ was } \pm 0.005\%$. Temperature was measured with a PRT mounted in a tube in the inside of the sphere. The thermometer was calibrated on the IPTS-68. The uncertainty in the temperature measurements was less than ± 10 mK.

The density of the sample was determined as the ratio of the mass of the sample m to the working volume V_{PT} of

Figure 6. The heat capacity at constant volume of pure water at supercritical isotherms as a function of the density. •, T = 648.67 K; •, T = 650.73 K; and the solid line represents smoothed values of C_{V} .

the calorimetric vessel, $\rho = m/V_{PT}$. The volume V_{PT} of the calorimeter was corrected for its variation with temperature *T* and pressure *P*. Corrections for the volume variations were calculated by an equation discussed previously (Abdulagatov et al., 1997a). The value of this correction to C_V connected with working-volume variation was not larger than $\pm 2\%$ of the total heat capacity.

The average value of the working volume was determined with an uncertainty not exceeding $\pm 0.015\%$. At selected experimental temperatures T and density ρ , the measurements of C_V were performed with different temperature increments ΔT (from 0.15 to 0.45 K) and energy differences ΔQ (from 400 to 820 J). Examples of such series of measurements are shown in Figure 2. The measured heat capacities were indeed independent of the applied temperature increment ΔT and energy differences ΔQ . The uncertainty of the measurements was $\pm 0.3\%$ although applied temperature and energy differences varied by a factor of 3. All measurements in the critical region were made with the samples briefly stirred using a stirrer made of a thin perforated steel foil. This permitted reduction of the errors caused by gravity and achieved homogenization of the investigated sample. The stirring was carried out during 2-3 s by rotating the calorimeter around the vertical axis. The mechanical energy of stirring is negligible.

The greatest uncertainty in the power of the inner heater was estimated to be $\pm 0.1\%$. Overall accuracy was limited by the fact that ΔT lay within the bounds ± 2 mK. The heating time was fixed by means of a frequency meter with an accuracy of ± 0.001 s.

The heat losses through sections of the calorimetric vessel not controlled by semiconductor (Cu₂O) layer were $\pm 0.01\%$.

For the liquid isochores (large *m*), the uncertainty in C_V is $\pm 1.5\%$. At vapor isochores (small *m*), the uncertainty in C_V is $\pm 2.5-3\%$. In the region of the immediate vicinity of the critical point (in the asymptotic region $|\Delta \rho| < 0.25$ and $|\Delta t| < 0.006$) the uncertainty in C_V is $\pm 4.5\%$.

The measurements were performed in both the forward direction (continuously heating) and in the reverse direction (continuously cooling). The measured isochoric heat

Table 3. Experimental Values of Temperatures T_S , Saturated Densities ρ_S , and One-Phase (C_{V1}, C'_{V1}) and Two-Phase (C_{V2}, C'_{12}) Specific Heats for Pure Water

<i>T</i> /K	$ ho_{ m S}/ m kg{\cdot}m^{-3}$	$C_{V2}/\mathrm{kJ}\cdot\mathrm{kg}^{-1}\cdot\mathrm{K}^{-1}$	C_{V1} /kJ·kg ⁻¹ ·K ⁻¹	$C_{V2}^{\prime\prime}/\mathrm{kJ}\cdot\mathrm{kg}^{-1}\cdot\mathrm{K}^{-1}$	$C_{V1}^{\prime\prime}/\mathrm{kJ}\cdot\mathrm{kg}^{-1}\cdot\mathrm{K}^{-1}$
414.316	925.241	4.276	3.606		
426.504	913.993	4.308	3.538		
464.451	874.738	4.439	3.412		
517.930	807.037	4.695	3.186		
569.561	720.046	5.164	3.031		
621.539	580.990	6.091	3.021		
642.607	455.560	8.322	3.328		
645.297	424.860	9.341	3.579		
646.956	370.370	13.190	6.852		
647.060	344.828	17.911	9.167		
647.095	316.850			34.555	21.518
647.090	309.598			22.140	10.300
646.250	250.000			14.621	5.940

Figure 7. One-phase heat capacities at constant volume C_{V1} of pure water as a function of the temperature on the coexistence curve: •, this work; *, Abdulagatov et al., 1995; \Box , Kerimov 1964; \triangle , Amirkhanov et al., 1974; and the solid line represents smoothing values of $C_{V.}$

capacities C_V are indeed independent of the direction. Differences of the experimental results were not larger than $\pm 0.3\%$.

The experimental values of saturation temperatures on each isochores was determined by the method of quasistatic thermograms (Voronel, 1974; Abdulagatov et al., 1994b, 1995b, 1997a). After the calorimeter was filled, the temperature was slowly increased with rates 5×10^{-5} K/s far from the critical point and 5 imes 10⁻⁶ K/s near the critical point and recorded simultaneously with time (τ) using a graphic recording voltmeter. These $T(\tau)$ thermograms for each isochore showed (Figure 3) a break point at the transition from a two-phase to a homogeneous one-phase region. Each break point was one point on the twodimensional ($T_{\rm S} - \rho_{\rm S}$) phase boundary plane and supplied also a value for the C_{V1} (one-phase saturated liquid isochoric heat capacity) or C'_{V1} (one-phase saturated vapor isochoric heat capacity) and C'_{ν_2} (two-phase saturated liquid isochoric heat capacity), or C'_{ν_2} (two-phase saturated vapor isochoric heat capacity) at this condition. The uncertainty in saturation temperature measured was no worse than $\pm (0.03 \text{ to } 0.05)$ K.

Results

Thirteen isochores were studied at densities from (250 to 925) kg·m⁻³. Each isochore consists of 11 to 70 points.

Figure 8. Two-phase isochoric heat capacities C_{V2} of pure water as a function of the temperature on the coexistence curve: \bullet , this work; *, Abdulagatov et al., 1995; \Box , Kerimov, 1964; \triangle , Amirkhanov et al., 1974; the solid line represents smoothed values of C_{V} .

The temperature range of the results was 412 K to 693 K. In total, 350 C_V measurements were made on 13 isochores, 127 in the two-phase region; and 223 in the one-phase region; 26 values of C_V have been measured on the coexistence curve. The experimental values are given in Table 2. All experimental temperatures were converted to the ITS-90 temperature scale (Preston-Thomas, 1990). Figure 4 presents all our experimental C_V results for isochores as a function of temperature near the phase transition and critical temperatures. Figure 5 shows the experimental behavior of C_V as a function of temperature for H₂O at near-critical isochore. The density dependence of the C_V for pure water at supercritical isotherms T =648.67 K and T = 650.73 K are given in Figure 6. Values of the one-phase and two-phase heat capacities on the coexistence curve are shown in Figures 7 and 8 together with earlier results. The experimental results of C_V and $T_{\rm S} - \rho_{\rm S}$ data on the coexistence curve that were determined by the method of quasi-static thermograms for pure water are presented in Table 3 and Figures 7, 8, and 9. The experimental values of C_{V2} in the two-phase region as a function of volume along the near-critical isotherms presented in Figure 10. As Figure 10 shows, the slope of the two-phase isotherms increases when the critical isotherm is approached. The increasing slope of the isotherms reflects the increase of second temperature derivatives

Figure 9. Curve of coexisting liquid and vapor densities for pure water: \bullet , this work; *, Abdulagatov et al., 1995; \Box , Kerimov, 1964; \triangle , Amirkhanov et al., 1974; solid curve, calculated values from the correlated equation Levelt Sengers 1995.

Figure 10. Experimental values of C_{V2} in the two-phase region as a function of volume for near-critical isotherms: •, T = 644.93 K; \bigcirc , T = 645.18 K; \blacksquare , T = 646.54 K; \square , T = 646.94 K; *, T = 647.07 K; \triangle , T = 647.09 K; the solid line represents smoothed values of C_{V} .

 $T(d^2P_S/dT^2)$ while the intercept for V = 0 is related to $-T(d^2\mu/dT^2)$ (see next section).

Discussion

In this work the SPHCT model of the equation of state has been used for our C_V experimental results for water. The SPHCT equation of state

$$P = \frac{RT}{V} + \frac{cRT}{V} \frac{4\eta - 2\eta^2}{(1 - \eta)^3} - \frac{RT}{V} \frac{Z_{\rm m} c V^* Y}{V + V^* Y}$$

has been applied successfully to the prediction of thermodynamic properties (van Pelt et al., 1992, 1993; Kim et al., 1986). From this equation of state the isochoric heat capacities may be calculated via the relation

Figure 11. Percentage deviations, $\delta C_V = 100(C_V^{exp} - C_V^{eal})/C_V^{exp}$, of the experimental isochoric heat capacity data obtained in this work from the values calculated with the SPHCT model equation of state (eq 5): +, $\rho = 925.241$; •, $\rho = 913.993$; \bigcirc , $\rho = 874.738$; •, $\rho = 807.037$; \square , $\rho = 424.863$; •, $\rho = 370.370$; \triangle , $\rho = 344.828$; *, $\rho = 316.840 \text{ kg} \cdot \text{m}^{-3}$.

$$C_{V} = C_{VO}(T) + RZ_{\rm m} \frac{c(V_{\rm r} - 1)(Y + 1)}{(V_{\rm r} + Y)^{2}} \cdot \left(\frac{1}{2T_{\rm r}}\right)^{2}$$
(5)

where $C_{VO}(T)$ is the ideal-gas heat capacity for water (Vargaftik, 1983)

$$C_{VO}/(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1}) = 25.852 \ 444 \ 5 - 0.332 \ 486 \times 10^{-2}$$

 $(T/\text{K}) + 0.690 \ 608 \ 5 \times 10^{-5} (T/\text{K})^2$

where $V_r = V/V^*$, $T_r = T/T^*$, $Y = \exp(T^*/2T) - 1$, $T^* =$ $\epsilon q/ck$ is the characteristic temperature, *k* is the Boltzman constant; $Z_{\rm m} = 18$ is the maximum coordination number, ϵ is the square-well depth of a surface segment, $V^* =$ $N_{\rm A}S\sigma^3/\sqrt{2}$ is the molar closet-packed volume, q is the external surface of a molecule, *s* is the segmental diameter, *S* is the number of segments per molecule, and *c* is the Prigogine flexibility parameter. The SPHCT model equation of state contains three molecular parameters c, V^* , T^* . The eq 5 was fitted to the one-phase experimental results in Table 2 in the range far from the critical point. Optimum values of *c*, *V**, *T** for water are $c = 1.021 \pm 0.01$; $V^* = 12.825 \pm 0.323 \text{ cm}^3 \cdot \text{mol}^{-1}; T^* = 1314.733 \pm 8.946 \text{ K}.$ The deviations between the calculated, eq 5, and experimental data are 4.5-5%. Figure 11 show the relative percentage deviations of the present experimental C_V data for H₂O. The maximum of the relative deviations is 10%. In the immediate vicinity of the critical point and the phase transition temperatures, differences increase to about 15-20% or more. For a correct description of the behavior of C_V for water near the critical point, the nonclassical (scaling) equation of state (Levelt Sengers et al., 1983) or the crossover theory (Kiselev et al., 1991; Anisimov and Kiselev, 1992; Kiselev and Sengers, 1993) one must use instead the classical expression (eq 5), which was avoided in these treatments.

Using two-phase heat capacity data $C_{\nu 2}$ the temperature derivatives of vapor pressures and saturated-phase chemical potentials have been extracted on the basis of the Yang–Yang relation

$$\frac{C_{V2}}{T} = -\frac{d^2\mu}{dT^2} + V\frac{d^2P_S}{dT^2}$$
(6)

This relation implies that C_{V2} should be linear versus the volume along each isotherm. For six near-critical isotherms of (644.93, 645.18, 646.54, 646.94, 647.07, 647.09) K, the volume dependence of two-phase heat capacity C_{V2} is shown in Figure 10. This Figure 10 exhibits the linear relationship between the two-phase heat capacity C_{V2} and the volume, the slopes of which equal $T(d^2P_S/dT^2)$ while the intercept for V = 0, related to $-T(d^2\mu/dT^2)$. Values of

Table 4. Comparison of the Vapor Pressure Second Derivatives d^2P_S/dT^2 for Pure Water from Heat Capacity Measurements with Values from Published Vapor Pressure Equations

<i>T</i> /K	$\mathrm{d}^2 P_\mathrm{S}/\mathrm{d}T^2/\mathrm{kPa}/\mathrm{K}^2$ a	$d^2P_S/dT^2/kPa/K^2$ b)	$\mathrm{d}^2 P_\mathrm{S}/\mathrm{d}T^2/\mathrm{kPa}/\mathrm{K}^2$ c)	$\mathrm{d}^2 P_\mathrm{S}/\mathrm{d}T^2/\mathrm{kPa}/\mathrm{K}^2\mathrm{d}$	$\mathrm{d}^2 P_\mathrm{S}/\mathrm{d}T^2/\mathrm{kPa}/\mathrm{K}^2{}^{e)}$	$\mathrm{d}^2\mu/\mathrm{d}T^2/\mathrm{k}\mathrm{J}/\mathrm{kg}\mathrm{K}^2$ fj
644.887	4.20	3.507	3.484	3.833	3.687	-0.0032
645.137	4.30	3.599	3.572	3.878	3.792	-0.0034
646.496	5.00	4.830	4.727	4.408	4.777	-0.0018
646.896	6.53	7.079	6.496	5.122	5.825	-0.0026
647.026	12.14	13.907	9.359			-0.0001

^{*a*} This work from C_V measurements. ^{*b*} From vapor-pressure equation (Levelt Sengers, 1995). ^{*c*} From vapor-pressure equation (Sato et al., 1986). ^{*d*} From vapor-pressure equation (Levelt Sengers et al., 1983). ^{*e*} From vapor-pressure equation (Levelt Sengers et al., 1972). ^{*f*} Values of $d^2\mu/dT^2$ derived in this work from C_V measurements.

Figure 12. Comparison of the vapor-pressure second temperature derivatives (d^2P_S/dT^2) from C_{V2} measurements with values from vapor-pressure curve: •, this work from C_V measurements; \bigcirc , Amirkhanov et al., 1974 from C_V measurements; solid line, values calculated from vapor-pressure curve (Levelt Sengers et al., 1983).

Figure 13. Percentage deviations, $\delta P_{\rm S} = 100(P_{\rm S}^{(8)} - P_{\rm S}^{\rm al})/P_{\rm S}^{(8)}$, of the vapor-pressure extracted from C_V measurements from the experimental vapor-pressure values and values calculated with vapor-pressure correlating equations: •, Levelt Sengers et al. (1983); \bigcirc , Sato et al. (1986); \triangle , Osborn et al. (1933) (experimental values); **A**, Cooper (1995); *, Wagner et al. (1986); **B**, Hanafusa et al. (1986) (experimental values).

 $-(d^2\mu/dT^2)$ vary slowly (see Table 4). The results of the calculated values of (d^2P_S/dT^2) and $(d^2\mu/dT^2)$ from eq 6 for water at each isotherm are given in Table 4 and Figure 12 together with values calculated from various vapor-pressure correlation equations. Values for (d^2P_S/dT^2) derived from the C_{V2} data are in reasonable agreement with those derived from the vapor pressure, the differences being within 10–15%. The values of the second temperature derivative (d^2P_S/dT^2) , determined from our C_{V2} results (Figure 12), increase rapidly as the critical temperature is approached. Methods of extraction of vapor pressures from C_{V2} values are discussed by Abdulagatov et al. (1994a, 1995b, 1997a). The values of adjusting parameters ($P_0 =$

Figure 14. Percentage deviations, $\delta_{PS} = 100(\rho_S^{exp} - \rho_S^{eal})/\rho_S^{exp}$, of the saturated vapor-liquid densities derived from C_V measurements from the values calculated with correlation equations: Δ , Levelt Sengers (1995); \bigcirc , Sato et al. (1986); \bullet , Wagner et al. (1986).

51.2282; $P_1 = -694.7$; $P_2 = 8655.3817$) in the scaling expression

$$\frac{d^2 P_{\rm S}}{dT^2} = \frac{P_{\rm C}}{T_{\rm C}^2} \{ (1-\alpha)(2-\alpha)P_0t^{-\alpha} + (1-\alpha+\Delta)(2-\alpha+\Delta)P_0t^{\Delta-\alpha} + 6P_0t \}$$
(7)

where the critical exponents $\alpha = 0.112$ and $\Delta = 0.5$ and parameters $t = 1 - T/T_{\rm C}$, $T_{\rm C} = 647.096$ and $P_{\rm C} = 22.064$ MPa (Levelt Sengers et al., 1983) have been found from a fit of the eq 7 to the our vapor-pressure second temperature derivatives ($d^2P_{\rm S}/dT^2$) derived from C_{V2} . Integrating eq 7 we obtain the vapor-pressure equation in following form

$$P_{\rm S}(T) = P_{\rm C} \bigg\{ 1 + \bigg(\frac{\mathrm{d}P_{\rm S}}{\mathrm{d}T} \bigg)_{\rm cr} t + P_2 t^3 + P_0 t^{2-\alpha} + P_1 t^{2+\Delta-\alpha} \bigg\}$$
(8)

where $(dP_S/dT)_{cr} = 7.412$ MPa/K. The values of vapor pressures calculated from C_{V2} data (eq 8) using the values of pressure and temperature derivative at critical point show satisfactorily agreement with experimental vapor pressure data in the critical region $(T_{\rm C} - 10 < T < T_{\rm C})$. The average relative deviation of $P_{\rm S}$ is about 0.2–0.3%. A more detailed comparison of vapor-pressure data derived from C_V measurements and the experimental and correlated vapor-pressure values are given in Figure 13. In the temperature range between 642 K and $T_{\rm C}$ the deviations are within about $\pm 0.1\%$. The extrapolation to lower temperatures (down to 635 K) results show deviations that reached up to +1.0%. In Figure 14 we also give the results of the comparison of our experimental coexistence vaporliquid densities data ($\rho'_{\rm S}$, $\rho''_{\rm S}$) derived from C_V measurements with values calculated from correlating equations (Levelt Sengers, 1995; Sato et al., 1986; Wagner et al., 1986). The average and maximum of the relative deviations are $\pm 0.2\%$ and +2%.

Conclusions

New measurements of the isochoric heat capacities of pure water are reported. The measurements were performed in a high-temperature and high-pressure adiabatic nearly constant-volume calorimeter in the temperature range of 412 K to 693 K at densities from (250 to 925) kg·m⁻³ with an uncertainty of $\pm 2\%$. In this paper we present also the new C_V and $T_S - \rho_S$ measurements of pure water along the coexistence curves in the temperature range from 412 K to 647 K. These measurements include the critical region. The results for the measurements on water are correlated by the classical SPHCT model of the equation of state. The parameters (c, T^*, V^*) of the SPHCT equation of state have been calculated using the new heat capacity measurements for water in the vapor and liquid phases. The relative average deviations for H₂O are within about $\pm 4.5\%$, except for the critical region where differences reached 15-20% and more. The two-phase heat capacities data C_{V2} were used to evaluate the second temperature derivatives of the vapor pressure and chemical potential. The values of vapor pressure was extracted from C_{V2} measurements using only the pressure and temperature derivative at the critical point.

Acknowledgment

The authors are very grateful to the Dr. J. W. Magee for his helpful comments, discussion and providing the program for temperature scale conversion from IPTS-68 to ITS-90.

Literature Cited

- Abdulagatov, I. M.; Dvoryanchikov, V. I. Isochoric heat capacity of ${xH_2O + (1 - x)KOH}$ near the critical point of pure water. J. Chem. Thermodyn. 1993, 25, 823-830.
- Abdulagatov, I. M.; Dvoryanchikov, V. I.; Abdurakhmanov, I. M. Thermodynamic properties of aqueous sodium hydroxide solutions near the liquid-gas critical point. Properties of water and steam. Proceedings of the 11th International Conference; Pichal, M., Sifner, O., Eds.; Hemisphere Publishing Corporation: New York, 1989; pp 203 - 209
- Abdulagatov, I. M.; Polikhronidi, N. G.; Batyrova, R. G. Measurements of the heat capacities C_v of carbon dioxide in the critical region. J. Chem. Thermodyn. 1994a, 26, 1031-1045.
- Abdulagatov, I. M.; Polikhronidi, N. G.; Batyrova, R. G. Isochoric heat capacity and liquid-gas coexistence curve of carbon dioxide in the region of the immediate vicinity of the critical point. Ber. Bunsen-Ges. Phys. Chem. 1994b, 98, 1068-1072.
- Abdulagatov, I. M.; Mursalov, B. A.; Gamzatov, N. M. Pseudospinodal phenomena and scaling of the isochoric heat capacity of the water in the vicinity of the critical point including the metastable region. Physical chemistry of aqueous systems. Proceedings of the 12th Physical chemistry of aqueous systems. Proceedings of the 12th International Conference on the Properties of Water and Steam. White, H., Sengers, J. V., Neumann, D. B., Bellows, J. C., Eds.; Begell House: New York, 1995a; pp 94–102.
 Abdulagatov, I. M.; Levina. L. N.; Zakaryaev, Z. R.; Mamchenkova, O. N. Thermodynamic properties of propane in the critical region. J. Chem. Thermodyn. 1995b, 27, 1385–1406.
- Abdulagatov, I. M.; Kiselev, S.B.; Levina, L. N.; Zakaryaev, Z. R.; Mamchenkova, O. N. Experimental and theoretical studies of the crossover of the specific heat $C_{\nu,x}$ of ethane, propane, and their mixture at critical isochores. Int. J. Thermophys. 1996, 17, 423– 440
- Abdulagatov, I. M.; Levina, L. N.; Zakaryaev, Z. R.; Mamchenkova, O. N. The two-phase specific heat at constant volume of propane in the critical region. *Fluid Phase Equilibr.* **1997a**, *127*, 205–236.
- Abdulagatov, I. M.; Dvoryanchikov, V. I.; Kamalov, A. N. Measurements of the heat capacities at constant volume of H2O and H2O + KNO₃. J. Chem. Thermodyn. 1997b, 29, 1387-1407.
- Amirkhanov, Kh. I.; Stepanov, G. V.; Alibekov, B. G. Isochoric Heat Capacity of Water and Steam, Amerind Publishing Co.: New Delhi. 1974.
- Amirkhanov, Kh. I.; Abdulagatov, I. M.; Alibekov, B. G.; Stepanov, G. V.; Boy, O. A. Equation of state and thermodynamic properties of propan-2-ol. *J. Chem. Thermodyn.* **1988**, *20*, 1385–1406.

- Anisimov, M. A.; Kiselev, S. B. Soviet Technical Review B. Thermal Physics. Sheidlin, A. E., Fortov, V. E., Eds.; Hardwood Academic: London, 1992; Vol. 3., Part. 2.
- Baehr, H. D.; Schomacker, H.; Schulz, S. Experimental determination of the internal energy of water in the vicinity of the critical point. *Forsch. Ing.-Wes.* **1974**, *40*, 15–24. Baehr, H. D.; Schomacker, H. Measurements of the specific isochoric
- heat capacity in the vicinity of the critical point of water. Forsch. Ing.-Wes. 1975, 41, 43-51.
- Bright, F. V.; McNally, M. E. P., Eds. Supercritical Fluid Technology, ACS Symposium Series; American Chemical Society: Washington, DC, 1992.
- Cooper, J. R. IAPWS Release on Skeleton Tables 1985 for the Thermodynamic Properties of Ordinary Water Substence. Physical chemistry of aqueous systems. Proceedings of the 12th International Conference on the Properties of Water and Steam; White, H., Sengers, J. V., Neumann, D. B., Bellows, J. C., Eds.; Begell House: New York, 1995; pp A13-83.
- Franck, E. U. Physicochemical Properties of Supercritical Solvents. Ber. Bunsen-Ges. Phys. Chem. 1984, 88, 820–825.
 Hanafusa, H.; Tsuchida, T.; Kawai, K.; Sato, H.; Uematsa, M.; Watanabe, K. Experimental Study of the PVT-Properties of Water in the Critical Parsian: Proceedings of the 10th Intermetional in the Critical Region; Proceedings of the 10th International Conference on the Properties of Steam; Sychev, V. V., Aleksandrov,
- A. A., Eds.; MIR Publishers: Moscow 1986; Vol. 1, pp 180-191. Hong, G. T.; Armellini, F. J.; Tester, J. W. Physical chemistry of aqueous systems. Proceedings of the 12th International Conference on the Properties of Water and Steam. White, H., Sengers, J. V., Neumann, D. B., Bellows, J. C., Eds.; Begell House: New York, 1995; pp 565.
- Huang, S.; Daehling, K.; Carleson, T. E.; Abdel-Latif, M.; Taylor, P.; Wai, C. Propp, A. Supercritical Fluid Science and Technology. K. P. Johnson and J. M. L. Penninger, Eds. ACS, Washington, DC, 1989. P.287.
- Johnston, K. P., Penninger, J. M. L., Eds.; Supercritical Fluid Science and Technology, American Chemical Society Symposium Series 406; American Chemical Society: Washington, DC, 1989.
- Kerimov, A. M. Ph.D. Thesis, Baku, Azerbajdjan, Azneftechim, 1964. Kim, C.-H.; Vimalchand, P.; Donohue, M. D.; Sandler, S. I. Local compositions model for chainlike molecules: a new simplified version of the perturbed hard chain theory. AIChE J. 1986, 32, 1726 - 1734.
- Kiran, E., Brennecke, J. F., Eds.; Supercritical Fluid Engineering Science. American Chemical Society Symposium Series 514; Ameri-can Chemical Society: Washington, DC, 1993.
- Kiran, E., Levelt Sengers, J. M. H., Eds.; Supercritical Fluids Fundamentals for Application; NATO ASI Series; Washington, DC, 1993; Vol. 273.
- Kiselev, S. B.; Sengers, J. V. An improved parametric crossover model to the thermodynamic properties of fluids in the critical region. Int. J. Thermophys. 1993, 14, 1–31.
- Kiselev, S. B.; Kostyukova, I. G.; Povodyrev, A. A. Universal crossover behaviour of fluids and fluid mixtures in the critical region. Int. J. Thermophys. 1991, 12, 877-825.
- Levelt Sengers, J. M. H. Supplementary Release on Saturation Properties of Ordinary Water Substance. Physical chemistry of aqueous systems. Proceedings of the 13th International Conference on the Properties of Water and Steam. White, H., Sengers, J. V., Neumann, D. B., Bellows, J. C., Eds.; Begell House: New York, 1995; pp A143-149.
- Levelt Sengers, J. M. H.; Greer S. C. Thermodynamic Anomalies Near the Critical Point of Steam. Int. J. Heat Mass Transfer 1972, 15, 1865-1886.
- Levelt Sengers, J. M. H.; Kamgar-Parsi, B.; Balfour, F. W.; Sengers, J. V. Thermodynamic properties of steam in the critical region. J. Phys. Chem. Ref. Data. 1983, 12, 1-28.
- Luddecke, T. O.; Magee, J. W. Molar Heat Capacity at Constant Volume of R32 and R125 from the Triple-Point Temperature to 345 K at Pressure 35 MPa. Int. J. Thermophys. 1996, 17, 823-849.
- Modell, M. Processing method for the oxidation of organics in super-critical water. U.S. Patent 4,543,190, 1985.
- Osborne, N. S.; Stimson, H. F.; Fisck, E. F.; Ginnings, D. C. The Pressure of Saturated Water Vapor in the Range 100–374 °C. J. Res. Natl. Bur. Stand. (U.S.) 1933, 10, 155–188.
- Preston-Thomas, H. The International Temperature Scale of 1990 (ITS-90). Metrologia 1990, 27, 3-10.
- Sato, H.; Uematsu, M.; Watanabe, K. Propasal of the New Skeletori Tables for the Thermodynamic Properties of Water and Steam. Proceedings of the 10th International Conference on the Properties of Steam; Sychev, V. V., Aleksandrov, A. A., Eds.; MIR Publishers: Moscow, 1986; Vol. 1, pp 71–89. Staszak, C. N.; Malinaaski, K. C.; Killilea, W. R. The pilot-scale
- demonstration of the MODAR oxidation process for the destruction of hazardous organic waste materials. Envir. Prog. 1987, 6, 39–43.
- W. Holgate, H. R.; Armellini, F. J.; Webley, P. A.; Killilea,
 W. R.; Hong, G. T.; Barner, H. E. Emerging technologies in hazardous waste management. Tedder, D. W., Pohland, F. G., Eds.; American Chemical Society: Washington, DC, 1991; p 35.

van Pelt A. Critical Phenomena in Binary Fluid Mixtures. Ph.D.

- van Pelt A. Critical Phenomena in Binary Fluid Mixtures. Fn.D. Thesis, Netherland, 1992.
 van Pelt, A.; Peters, C. J.; de Swaan J. A. Application of the simplified-perturbed-hard-chain Theory for pure components near the critical point. *Fluid Phase Equilib.* 1993, *84*, 23–47.
 Vargaftik, N. B. *Handbook of Physical Properties of Liquid and Gases*, 2nd ed.; Hemisphere: New York, 1983.
 Voronel, A. V. Thermal measurements and critical phenomena in liquids. Phase Transitions and Critical Phenomena. Domb, C., *Green M. S. Eds.* Academic Press: London. 1974; Vol. 5, pp 343–
- Green, M. S., Eds.; Academic Press: London, 1974; Vol. 5, pp 343–394.

Wagner, W.; Saul, A. Correlation Equation for the Vapor Pressure and for the Orthobaric Densities of Water Substance. Proceedings of the

10th International Conference on the Properties of Steam; Sychev, V. V., Aleksandrov, A. A., Eds.; MIR Publishers: Moscow, 1986; Vol. 1, pp_199-209.

Weber, L. A. Measurements of the heat capacities C_V of dense gaseous and liquid nitrogen and nitrogen trifluoride. *J. Chem. Thermodyn.* **1981**, *13*, 389–403.

Received for review February 11, 1998. Accepted June 8, 1998. The research was supported by the Russian Science Foundation under Grant Number 96-02-16005 and INTAS under Grant Number INTAS-96-1989.

JE980046W